1. MTD chip driver模块的注册
在MTD子系统中,不管你是什么类型的存储芯片,RAM也好,ROM也好,CFI接口flash或者JEDEC接口的flash,他们的driver都是以mtd_chip_driver结构体描述的。具体类型的存储芯片的driver模块,有定义一个mtd_chip_driver结构体,并且通过调用register_mtd_chip_driver注册到MTD子系统。
struct mtd_chip_driver { struct mtd_info *(*probe)(struct map_info *map); void (*destroy)(struct mtd_info *); struct module *module; char *name; struct list_head list;};复制代码
比如cfi接口的flash定义如下,文件位置drivers/mtd/chips/cfi_probe.c
static struct mtd_chip_driver cfi_chipdrv = { .probe = cfi_probe, .name = "cfi_probe", .module = THIS_MODULE};static int __init cfi_probe_init(void){ register_mtd_chip_driver(&cfi_chipdrv); return 0;}复制代码
比如jedec接口的flash定义如下,文件位置drivers/mtd/chips/jedec_probe.c
static struct mtd_chip_driver jedec_chipdrv = { .probe = jedec_probe, .name = "jedec_probe", .module = THIS_MODULE};static int __init jedec_probe_init(void){ register_mtd_chip_driver(&jedec_chipdrv); return 0;}复制代码
也就是说,每种chip driver都是一个独立的模块,但是都定义了自己的mtd_chip_driver结构体,并在模块初始化函数里调用了register_mtd_chip_driver。
接下来看看register_mtd_chip_driver函数的实现,其实就是把mtd_chip_driver结构体都链接到了一个链表上。
void register_mtd_chip_driver(struct mtd_chip_driver *drv){ spin_lock(&chip_drvs_lock); list_add(&drv->list, &chip_drvs_list); spin_unlock(&chip_drvs_lock);}复制代码
2. MTD chip device的定义
如下是设备树中关于cfi-flash的配置。根据如下的定义,内核在解析设备树后,会生成一个关于cfi-flash这个节点对应的platform_device。类似的可以根据自己平台具体情况定义RAM, ROM等存储芯片。
/ { #address-cells = <1>; #size-cells = <1>; ... smb { compatible = "simple-bus"; #address-cells = <2>; #size-cells = <1>; // ranges配置了5个片选对应到的cpu地址空间范围 //range语法:子地址(2) 父地址(1) 子地址空间长度 //第一项表示:片选0 偏移0 映射到cpu的0x40000000地址, 映射长度为0x04000000 //第二项表示:片选1 偏移0 映射到cpu的0x44000000地址, 映射长度为0x04000000 //后面的依次类推 ranges = <0 0 0x40000000 0x04000000>, <1 0 0x44000000 0x04000000>, <2 0 0x48000000 0x04000000>, <3 0 0x4c000000 0x04000000>, <7 0 0x10000000 0x00020000>; motherboard { model = "V2M-P1"; arm,hbi = <0x190>; arm,vexpress,site = <0>; compatible = "arm,vexpress,v2m-p1", "simple-bus"; #address-cells = <2>; /* SMB chipselect number and offset */ #size-cells = <1>; #interrupt-cells = <1>; ranges; flash@0,00000000 { compatible = "arm,vexpress-flash", "cfi-flash"; // norflash的片选0的 偏移0 映射到ranges定义的片选0 //所以这里定义了两片norflash //第一片映射到cpu地址0x40000000, //第二片映射到cpu地址0x44000000,两片的长度都是0x04000000(64MB) //这里定义的是两个板块,每个板块64MB, //从log每块都支持x8,x16两种模式,可在硬件上通过一个BYTE# pin选择 reg = <0 0x00000000 0x04000000>, <1 0x00000000 0x04000000>; //定义总线位宽为4B=32bit bank-width = <4>; }; ... } //end of motherboard ... } //end of smb ...}复制代码
3. 把MTD chip与MTD driver关联起来
Linux 4.x 通过drivers\mtd\mapsPhysmap_of.c这一个模块,就实现了各种类型存储器与对应驱动的关联,代码尽显灵活和抽象。从下面的代码的of_flash_match定义的表来看,在设备树中定义的"cfi-flash","jedec-flash","mtd-ram","mtd-rom","rom"等类型的节点,都使用这个模块的代码把chip与driver关联起来。从下面的代码可以看出,不管你是Norflash还是nandflash,只要是cfi接口的,都会匹配到"cfi-flash"。
TODO:这里有个疑问,"mtd-ram"是指系统中的内存吗?
static struct of_device_id of_flash_match[] = { { //compatible字段指定了mtd chip的类型, //可取值为"cfi-flash", "jedec-flash","mtd-ram","mtd-rom"任何一个. .compatible = "cfi-flash", // data字段描述的是这个设备probe的类型,最终会作为do_map_probe函数的参数 .data = (void *)"cfi_probe", }, { /* FIXME: JEDEC chips can't be safely and reliably * probed, although the mtd code gets it right in * practice most of the time. We should use the * vendor and device ids specified by the binding to * bypass the heuristic probe code, but the mtd layer * provides, at present, no interface for doing so * :(. */ .compatible = "jedec-flash", .data = (void *)"jedec_probe", }, { .compatible = "mtd-ram", .data = (void *)"map_ram", }, { .compatible = "mtd-rom", .data = (void *)"map_rom", }, { .type = "rom", .compatible = "direct-mapped" }, { },};MODULE_DEVICE_TABLE(of, of_flash_match);static struct platform_driver of_flash_driver = { .driver = { .name = "of-flash", .of_match_table = of_flash_match, }, .probe = of_flash_probe, .remove = of_flash_remove,};复制代码
3.1 of_flash_probe的实现
// 根据设备树中定义的compatible属性来查找of_flash_match表中对应的匹配项 // 找到匹配的项则返回指向of_flash_match数组项的指针 match = of_match_device(of_flash_match, &dev->dev); if (!match) return -EINVAL; probe_type = match->data; // 根据flash@0,00000000节点的父亲节点的address-cells和size-cells的大小, // 来计算出reg一个尖括号<>定义的元组的大小=(2+1)*4=12字节 reg_tuple_size = (of_n_addr_cells(dp) + of_n_size_cells(dp)) * sizeof(u32); of_property_read_string(dp, "linux,mtd-name", &mtd_name); /* * Get number of "reg" tuples. Scan for MTD devices on area's * described by each "reg" region. This makes it possible (including * the concat support) to support the Intel P30 48F4400 chips which * consists internally of 2 non-identical NOR chips on one die. */ p = of_get_property(dp, "reg", &count); if (count % reg_tuple_size != 0) { dev_err(&dev->dev, "Malformed reg property on %s\n", dev->dev.of_node->full_name); err = -EINVAL; goto err_flash_remove; } // 定义reg的多个元组,可支持多个板块 // 这里定义了2个元组,所以count=24B/12=2 count /= reg_tuple_size; map_indirect = of_property_read_bool(dp, "no-unaligned-direct-access");复制代码
分配管理结构体内存,一个reg元组,定义了一个板块,对应一个of_flash_list结构体。
struct of_flash_list { struct mtd_info *mtd; struct map_info map; struct resource *res; }; struct of_flash { struct mtd_info *cmtd; int list_size; /* number of elements in of_flash_list */ struct of_flash_list list[0]; }; mtd_list = kzalloc(sizeof(*mtd_list) * count, GFP_KERNEL); if (!mtd_list) goto err_flash_remove; // 一个设备树节点分配一个of_flash结构体 // of_flash结构体可能定义多个reg元组,对应多个of_flash_list info = devm_kzalloc(&dev->dev, sizeof(struct of_flash) + sizeof(struct of_flash_list) * count, GFP_KERNEL); if (!info) goto err_flash_remove; dev_set_drvdata(&dev->dev, info);复制代码
根据DTS中定义的板块的数量,分别读出DTS中对应的地址空间映射和总线位宽配置,然后根据这些信息初始化map_info结构体。调用do_map_probe去probe特定的硬件,返回描述闪存物理信息的mtd_info结构体。
for (i = 0; i < count; i++) { err = -ENXIO; //把在DTS中定义的地址空间范围转化为resource结构体 if (of_address_to_resource(dp, i, &res)) { /* * Continue with next register tuple if this * one is not mappable */ continue; } dev_dbg(&dev->dev, "of_flash device: %pR\n", &res); err = -EBUSY; res_size = resource_size(&res); //本案中定义的2个板块,定义了2个地址空间 //第一块,0x40000000-0x43ffffff 64MB //第二块,0x44000000-0x47ffffff 64MB //请求resource,统一资源管理,避免资源冲突等问题 info->list[i].res = request_mem_region(res.start, res_size, dev_name(&dev->dev)); if (!info->list[i].res) goto err_out; err = -ENXIO; //读取总线位宽的配置 width = of_get_property(dp, "bank-width", NULL); if (!width) { dev_err(&dev->dev, "Can't get bank width from device" " tree\n"); goto err_out; } //初始化map_info结构体,这些可看做配置信息,后面会通过cfi读出芯片的实际配置信息。 info->list[i].map.name = mtd_name ?: dev_name(&dev->dev); //板块物理地址的起始位置和大小 info->list[i].map.phys = res.start; info->list[i].map.size = res_size; //设置板块的总线位宽 //DTB是以大端存储的,所以需要转为cpu字节序 info->list[i].map.bankwidth = be32_to_cpup(width); info->list[i].map.device_node = dp; err = -ENOMEM; //把板块的物理地址映射到内核的线性空间 info->list[i].map.virt = ioremap(info->list[i].map.phys, info->list[i].map.size); if (!info->list[i].map.virt) { dev_err(&dev->dev, "Failed to ioremap() flash" " region\n"); goto err_out; } //当需要支持的非线性空间的映射时,需要开启配置开关CONFIG_MTD_COMPLEX_MAPPINGS //这里我没有配置,所以该操作就是检查下从DTS读出来的总线位宽是否被内核支持 simple_map_init(&info->list[i].map); /* * On some platforms (e.g. MPC5200) a direct 1:1 mapping * may cause problems with JFFS2 usage, as the local bus (LPB) * doesn't support unaligned accesses as implemented in the * JFFS2 code via memcpy(). By setting NO_XIP, the * flash will not be exposed directly to the MTD users * (e.g. JFFS2) any more. */ if (map_indirect) info->list[i].map.phys = NO_XIP; if (probe_type) { info->list[i].mtd = do_map_probe(probe_type, &info->list[i].map); } else { // 兼容老式的probe接口,可以在DTS中定义"probe-type"属性,但是实际底层都是调用do_map_probe函数 info->list[i].mtd = obsolete_probe(dev, &info->list[i].map); } ... }复制代码
3.2 do_map_probe函数
此函数用了典型的工厂方法设计模式,通过传入probe_type参数,指定要probe的类型,进而调用特定类型接口的probe函数,返回描述闪存信息mtd_info结构体。
struct mtd_info *do_map_probe(const char *name, struct map_info *map){ struct mtd_chip_driver *drv; struct mtd_info *ret; //根据name查找链表chip_drvs_list,找到mtd_chip_driver结构体 // 当找到定义该结构体的chip driver模块时,会增加该chip driver模块的引用计数,避免模块在使用过程中被异步卸载 //比如现在name="cfi_probe",定义该接口probe的模块是cfi_probe.c,增加的引用计数是cfi_probe.c这个模块,这个模块是probe-only的,在probe完后,是可以卸载的 drv = get_mtd_chip_driver(name); //如果特定接口的chip probe driver模块是编译成独立的模块,请求加载该模块驱动 if (!drv && !request_module("%s", name)) drv = get_mtd_chip_driver(name); if (!drv) return NULL; //调用特定接口的chip probe函数 ret = drv->probe(map); /* We decrease the use count here. It may have been a probe-only module, which is no longer required from this point, having given us a handle on (and increased the use count of) the actual driver code. */ module_put(drv->module); return ret;}复制代码
drv->probe调用的是特定接口的chip实现的 probe函数,比如cfi接口的probe实现如下,它调用的是通用的probe函数mtd_do_chip_probe,传递了cfi_chip_probe结构体指针参数。
struct mtd_info *cfi_probe(struct map_info *map){ /* * Just use the generic probe stuff to call our CFI-specific * chip_probe routine in all the possible permutations, etc. */ return mtd_do_chip_probe(map, &cfi_chip_probe);}复制代码
3.3 mtd_do_chip_probe
该函数主要的工作是:
struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp){ struct mtd_info *mtd = NULL; struct cfi_private *cfi; /* First probe the map to see if we have CFI stuff there. */ cfi = genprobe_ident_chips(map, cp); if (!cfi) return NULL; map->fldrv_priv = cfi; /* OK we liked it. Now find a driver for the command set it talks */ mtd = check_cmd_set(map, 1); /* First the primary cmdset */ if (!mtd) mtd = check_cmd_set(map, 0); /* Then the secondary */ if (mtd) { if (mtd->size > map->size) { printk(KERN_WARNING "Reducing visibility of %ldKiB chip to %ldKiB\n", (unsigned long)mtd->size >> 10, (unsigned long)map->size >> 10); mtd->size = map->size; } return mtd; } printk(KERN_WARNING"gen_probe: No supported Vendor Command Set found\n"); kfree(cfi->cfiq); kfree(cfi); map->fldrv_priv = NULL; return NULL;}复制代码
3.3.1 genprobe_ident_chips尝试probe一个新的CFI chip
这里注意下几个编程要点:
- 读写,要按照总线位宽读写,不是FLASH芯片位宽(例如背靠背)
- 寻址,程序要访问的地址和FLASH芯片地址引脚得到的值是不一样的,例如16位的FLASH芯片,对于CPU,0x00和0x01表示2个不同的字节,但是到了FLASH引脚得到的都是0,也就是都指向FLASH的第一个WORD。可以认为地址总线的bit0悬空,或者认为转换总线, bit0上实际输出的是bit1。这个解释了要点1
- 芯片手册提到偏移量都是基于WORD的,而WORD的位宽取决于芯片的位宽,因此在下命令的时候,实际偏移=手册偏移*buswidth/8。
- 芯片手册提到的变量长度(典型如CFI信息)例如2,指的是,变量是个16bit数,但是读的时候,要读2个WORD,然后把每个WORD的低8位拼成1个16bit数。读WORD再拼凑确实挺麻烦,尤其是读取大结构的时候,不过参照cfi_util.c的cfi_read_pri函数的做法就简单了
- 背靠背,也就是比方说2块16位的芯片一起接在32位的总线上。带来的就是寻址的问题,很显然,首先要按32位读写;其次就是下命令的地址,实际偏移=手册偏移interleavedevice_type/8,device_type=buswidth/interleave,而buswidth这个时候是32(总线位宽)。另外就是背靠背的时候,命令和返回的状态码是“双份的”,例如2块16位背靠背,读命令是0x00ff00ff
map_bankwidth(map) 表示flash总线位宽,1表示8bit,2表示16bit,4表示32bit cfi->interleave表示几块chip并列即背靠背,可取值1,2,4,8 cfi->device_type表示chip内部芯片位宽,即chip字长,系统定义了3种device_type
#define CFI_DEVICETYPE_X8 (8 / 8)#define CFI_DEVICETYPE_X16 (16 / 8)#define CFI_DEVICETYPE_X32 (32 / 8)复制代码
总线位宽=device_type*interleave
举个例子,2块16位的芯片一起接在32位的总线上,也可以4块8位的芯片一起接在32位的总线上。
static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, struct cfi_private *cfi){ //根据公式,总线位宽=device_type*interleave //在总线位宽确定的情况下,device_type最小取1,得到max_chips //device_type最大取4,得到min_chips int min_chips = (map_bankwidth(map)/4?:1); /* At most 4-bytes wide. */ int max_chips = map_bankwidth(map); /* And minimum 1 */ int nr_chips, type; //interleave可取值1,2,4,8,nr_chips >>= 1相当于nr_chips=nr_chips/2 //枚举是让尽量多的chip并列,减少对chip本身字长的要求 for (nr_chips = max_chips; nr_chips >= min_chips; nr_chips >>= 1) { //检查下内核是否支持nr_chips并列 if (!cfi_interleave_supported(nr_chips)) continue; cfi->interleave = nr_chips; /* Minimum device size. Don't look for one 8-bit device in a 16-bit bus, etc. */ type = map_bankwidth(map) / nr_chips; for (; type <= CFI_DEVICETYPE_X32; type<<=1) { cfi->device_type = type; //一旦probe成功,退出函数 if (cp->probe_chip(map, 0, NULL, cfi)) return 1; } } return 0;}复制代码
3.3.1.1 cfi_probe_chip probe第1个chip
/* check for QRY. in: interleave,type,mode ret: table index, <0 for error */static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, unsigned long *chip_map, struct cfi_private *cfi){ int i; // map->size为板块的物理地址空间大小,从DTS中读出的 if ((base + 0) >= map->size) { printk(KERN_NOTICE "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n", (unsigned long)base, map->size -1); return 0; } //base当前已经probe了的chip size, 一般norflash sector最小大小为256B //也就是还剩下不到1个sector的大小要probe,可以认为不用probe了 if ((base + 0xff) >= map->size) { printk(KERN_NOTICE "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n", (unsigned long)base + 0x55, map->size -1); return 0; } xip_disable(); // cfi_qry_mode_on进入norflash的cfi查询模式,如果支持查询模式返回1 if (!cfi_qry_mode_on(base, map, cfi)) { xip_enable(base, map, cfi); return 0; } //第一次调用该函数时,numchips=0 if (!cfi->numchips) { /* This is the first time we're called. Set up the CFI stuff accordingly and return */ return cfi_chip_setup(map, cfi); }复制代码
cfi_chip_setup函数主要功能是probe cfi类型的chip,返回1表示probe chip成功了,0表示失败。 根据CFI查询模式和device ID等信息,初始化了cfi_ident结构体以及 cfi_private->mfr, cfi_private->id;
static int __xipram cfi_chip_setup(struct map_info *map, struct cfi_private *cfi){ //实际偏移=手册偏移*总线位宽/8 //所以偏移因子是总线位宽/8,即转化为字节为单位 int ofs_factor = cfi->interleave*cfi->device_type; __u32 base = 0; //从cfi的手册知道0x2C是查询norflash有多少个擦除区(erase region) //根据手册,擦除区是指具有同样大小的连续的擦除块( Erase Block), //注意一定要是连续的擦除块,不连续的就算两个区了 //本实验chip, num_erase_regions = 1 int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); int i; int addr_unlock1 = 0x555, addr_unlock2 = 0x2AA; xip_enable(base, map, cfi);#ifdef DEBUG_CFI printk("Number of erase regions: %d\n", num_erase_regions);#endif // num_erase_regions=0表没有擦除区,或者只能整个device都擦除 if (!num_erase_regions) return 0; //在这个结构体尾部给每个擦除区分配4B空间放擦除区信息。 cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); if (!cfi->cfiq) return 0; memset(cfi->cfiq,0,sizeof(struct cfi_ident)); cfi->cfi_mode = CFI_MODE_CFI; cfi->sector_erase_cmd = CMD(0x30); /* Read the CFI info structure */ xip_disable_qry(base, map, cfi); //读取CFI的查询结构体,一次只能读1B for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); /* Do any necessary byteswapping */ cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize);#ifdef DEBUG_CFI /* Dump the information therein */ print_cfi_ident(cfi->cfiq);#endif for (i=0; icfiq->NumEraseRegions; i++) { cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]);#ifdef DEBUG_CFI printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1);#endif }复制代码
下图是某flash的device ID地址图,该地址空间提供了关于flash的制造商ID,device ID,扇区保护状态,以及其他的一些关于flash的特性。
有两种方法知道flash的类型,一种是传统的Autoselect,即device ID,另外一种是CFI,他们使用的地址空间是不同。
if (cfi->cfiq->P_ID == P_ID_SST_OLD) { addr_unlock1 = 0x5555; addr_unlock2 = 0x2AAA; } /* * Note we put the device back into Read Mode BEFORE going into Auto * Select Mode, as some devices support nesting of modes, others * don't. This way should always work. * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and * so should be treated as nops or illegal (and so put the device * back into Read Mode, which is a nop in this case). */ cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0xaa, addr_unlock1, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x55, addr_unlock2, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x90, addr_unlock1, base, map, cfi, cfi->device_type, NULL); // 以上命令序列是让flash进入Auto Select Mode,目的是为了读取flash的ID. cfi->mfr = cfi_read_query16(map, base); cfi->id = cfi_read_query16(map, base + ofs_factor); /* Get AMD/Spansion extended JEDEC ID */ if (cfi->mfr == CFI_MFR_AMD && (cfi->id & 0xff) == 0x7e) cfi->id = cfi_read_query(map, base + 0xe * ofs_factor) << 8 | cfi_read_query(map, base + 0xf * ofs_factor); /* Put it back into Read Mode */ // 发送0xF0 reset norflash, 重新返回到read mode // 发送0xFF 退出CFI查询模式 cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank. Manufacturer ID %#08x Chip ID %#08x\n", map->name, cfi->interleave, cfi->device_type*8, base, map->bankwidth*8, cfi->mfr, cfi->id); return 1;}复制代码
3.3.1.2 cfi_probe_chip probe剩余的chip实现
if (!cfi->numchips) { /* This is the first time we're called. Set up the CFI stuff accordingly and return */ return cfi_chip_setup(map, cfi); } //从第0个大CHIP开始时,核对已经probe过的大CHI中是否有别名 //如果之前probe的有别名就不用probe了 //TODO: 别名? 判断别名的原理是? /* Check each previous chip to see if it's an alias */ for (i=0; i < (base >> cfi->chipshift); i++) { unsigned long start; if(!test_bit(i, chip_map)) { //当前位置没有有效的大CHIP /* Skip location; no valid chip at this address */ continue; } start = i << cfi->chipshift; /* This chip should be in read mode if it's one we've already touched. */ if (cfi_qry_present(map, start, cfi)) { /* Eep. This chip also had the QRY marker. * Is it an alias for the new one? */ cfi_qry_mode_off(start, map, cfi); /* If the QRY marker goes away, it's an alias */ if (!cfi_qry_present(map, start, cfi)) { xip_allowed(base, map); printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); return 0; } /* Yes, it's actually got QRY for data. Most * unfortunate. Stick the new chip in read mode * too and if it's the same, assume it's an alias. */ /* FIXME: Use other modes to do a proper check */ cfi_qry_mode_off(base, map, cfi); if (cfi_qry_present(map, base, cfi)) { xip_allowed(base, map); printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); return 0; } } } // 程序能跑到这里,说明之前没有别名,实际probe到的大CHIP数++ /* OK, if we got to here, then none of the previous chips appear to be aliases for the current one. */ set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ cfi->numchips++; /* Put it back into Read Mode */ cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", map->name, cfi->interleave, cfi->device_type*8, base, map->bankwidth*8); return 1;复制代码
3.3.1.3 genprobe_ident_chips实际probe一个新的CFI chip后的初始化
// cfi.cfiq->DevSize表示该chip的大小,如果DevSize=n, 则chip容量为2^n 字节 cfi.chipshift = cfi.cfiq->DevSize; //考虑一个模块中 背靠背的norflash chip的个数N // 多个chip是一样的,所以总大小是N的倍数 if (cfi_interleave_is_1(&cfi)) { ; } else if (cfi_interleave_is_2(&cfi)) { cfi.chipshift++; } else if (cfi_interleave_is_4((&cfi))) { cfi.chipshift += 2; } else if (cfi_interleave_is_8(&cfi)) { cfi.chipshift += 3; } else { BUG(); } // 背靠背的多块norflash chip计作一个大CHIP cfi.numchips = 1; /* * Allocate memory for bitmap of valid chips. * Align bitmap storage size to full byte. */ max_chips = map->size >> cfi.chipshift; if (!max_chips) { //DTS配置的总大小小于一块的大小,算做一个大CHIP printk(KERN_WARNING "NOR chip too large to fit in mapping. Attempting to cope...\n"); max_chips = 1; } 以long为单位分配bitmap mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG); chip_map = kzalloc(mapsize, GFP_KERNEL); if (!chip_map) { kfree(cfi.cfiq); return NULL; } set_bit(0, chip_map); /* Mark first chip valid */ // 再次调用cfi_probe_chip 去probe其余的chip /* * Now probe for other chips, checking sensibly for aliases while * we're at it. The new_chip probe above should have let the first * chip in read mode. */ for (i = 1; i < max_chips; i++) { cp->probe_chip(map, i << cfi.chipshift, chip_map, &cfi); } // probe完了所有的chip,给该norflash模块重新分配cfi_private结构体,并为每个大CHIP分配 //一个flchip结构体 /* * Now allocate the space for the structures we need to return to * our caller, and copy the appropriate data into them. */ retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL); if (!retcfi) { kfree(cfi.cfiq); kfree(chip_map); return NULL; } memcpy(retcfi, &cfi, sizeof(cfi)); memset(&retcfi->chips[0], 0, sizeof(struct flchip) * cfi.numchips); for (i = 0, j = 0; (j < cfi.numchips) && (i < max_chips); i++) { if(test_bit(i, chip_map)) { // 初始化有效的大CHIP结构 struct flchip *pchip = &retcfi->chips[j++]; pchip->start = (i << cfi.chipshift); pchip->state = FL_READY; init_waitqueue_head(&pchip->wq); mutex_init(&pchip->mutex); } } kfree(chip_map); return retcfi;复制代码
3.3.2 check_cmd_set
probe完chip后,就可以根据CFI查询表中定义的算法命令集去调用产商特定的初始化函数。首先会尝试首选算法命令集,如果失败会再尝试备选算法命令集。check_cmd_set就是根据primary参数来选择首选/备选算法命令集的。
static struct mtd_info *check_cmd_set(struct map_info *map, int primary){ struct cfi_private *cfi = map->fldrv_priv; //根据参数选择主/备选的算法命令集 __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; if (type == P_ID_NONE || type == P_ID_RESERVED) return NULL; switch(type){ /* We need these for the !CONFIG_MODULES case, because symbol_get() doesn't work there */#ifdef CONFIG_MTD_CFI_INTELEXT case P_ID_INTEL_EXT: case P_ID_INTEL_STD: case P_ID_INTEL_PERFORMANCE: return cfi_cmdset_0001(map, primary);#endif#ifdef CONFIG_MTD_CFI_AMDSTD case P_ID_AMD_STD: case P_ID_SST_OLD: case P_ID_WINBOND: return cfi_cmdset_0002(map, primary);#endif#ifdef CONFIG_MTD_CFI_STAA case P_ID_ST_ADV: return cfi_cmdset_0020(map, primary);#endif // 用于支持自定义的算法命令集。 // 该函数会根据从cfi查询表中读出来的P_ID/A_ID加载对应的cfi_cmdset_XXXX.c模块,然后调用该模块中的cfi_cmdset_XXXX函数 default: return cfi_cmdset_unknown(map, primary); }}复制代码
kernel当前代码支持3个算法命令集。当然也支持完全自定义的算法命令集。
下面着重分析cfi_cmdset_0001,其他的命令集类似。
struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary){ struct cfi_private *cfi = map->fldrv_priv; struct mtd_info *mtd; int i; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); if (!mtd) return NULL; mtd->priv = map; mtd->type = MTD_NORFLASH; // 每种算法都有自己自定义的这些API /* Fill in the default mtd operations */ mtd->_erase = cfi_intelext_erase_varsize; mtd->_read = cfi_intelext_read; mtd->_write = cfi_intelext_write_words; mtd->_sync = cfi_intelext_sync; mtd->_lock = cfi_intelext_lock; mtd->_unlock = cfi_intelext_unlock; mtd->_is_locked = cfi_intelext_is_locked; mtd->_suspend = cfi_intelext_suspend; mtd->_resume = cfi_intelext_resume; mtd->flags = MTD_CAP_NORFLASH; mtd->name = map->name; //初始化写norflash的最小size,具体可参看该结构体的说明注释 mtd->writesize = 1; //当写大块的数据时,使用这个大小,一般norflash mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; // 重启时,调用该回调 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; // TODO: CFI VS jedec规范的区别 if (cfi->cfi_mode == CFI_MODE_CFI) { /* * It's a real CFI chip, not one for which the probe * routine faked a CFI structure. So we read the feature * table from it. */ __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; struct cfi_pri_intelext *extp; // 根据基本查询表中定义的扩展查询表的地址,去读扩展查询表的内容 extp = read_pri_intelext(map, adr); if (!extp) { kfree(mtd); return NULL; } /* Install our own private info structure */ cfi->cmdset_priv = extp; // 给某些产品打上补丁 cfi_fixup(mtd, cfi_fixup_table);#ifdef DEBUG_CFI_FEATURES /* Tell the user about it in lots of lovely detail */ cfi_tell_features(extp);#endif //erase suspend后是否支持写操作 if(extp->SuspendCmdSupport & 1) { printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); } } else if (cfi->cfi_mode == CFI_MODE_JEDEC) { /* Apply jedec specific fixups */ cfi_fixup(mtd, jedec_fixup_table); } /* Apply generic fixups */ cfi_fixup(mtd, fixup_table); //使用CFI查询的参数设置大CHIP的管理结构 for (i=0; i< cfi->numchips; i++) { if (cfi->cfiq->WordWriteTimeoutTyp) cfi->chips[i].word_write_time = 1<cfiq->WordWriteTimeoutTyp; else cfi->chips[i].word_write_time = 50000; if (cfi->cfiq->BufWriteTimeoutTyp) cfi->chips[i].buffer_write_time = 1< cfiq->BufWriteTimeoutTyp; /* No default; if it isn't specified, we won't use it */ if (cfi->cfiq->BlockEraseTimeoutTyp) cfi->chips[i].erase_time = 1000< cfiq->BlockEraseTimeoutTyp; else cfi->chips[i].erase_time = 2000000; if (cfi->cfiq->WordWriteTimeoutTyp && cfi->cfiq->WordWriteTimeoutMax) cfi->chips[i].word_write_time_max = 1<<(cfi->cfiq->WordWriteTimeoutTyp + cfi->cfiq->WordWriteTimeoutMax); else cfi->chips[i].word_write_time_max = 50000 * 8; if (cfi->cfiq->BufWriteTimeoutTyp && cfi->cfiq->BufWriteTimeoutMax) cfi->chips[i].buffer_write_time_max = 1<<(cfi->cfiq->BufWriteTimeoutTyp + cfi->cfiq->BufWriteTimeoutMax); if (cfi->cfiq->BlockEraseTimeoutTyp && cfi->cfiq->BlockEraseTimeoutMax) cfi->chips[i].erase_time_max = 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + cfi->cfiq->BlockEraseTimeoutMax); else cfi->chips[i].erase_time_max = 2000000 * 8; cfi->chips[i].ref_point_counter = 0; init_waitqueue_head(&(cfi->chips[i].wq)); } map->fldrv = &cfi_intelext_chipdrv; return cfi_intelext_setup(mtd);}复制代码
从read_pri_intelext的实现可以看出,intel 扩展查询特性是向后兼容,对于新增的特性,会加在老特性的后面。 后面硬件分区表特性暂放。
总结read_pri_intelext做的工作就是读取cfi扩展查询表,根据扩展的次版本号MinorVersion,判断支持的特性,分配附加存储空间。
static inline struct cfi_pri_intelext *read_pri_intelext(struct map_info *map, __u16 adr){ struct cfi_private *cfi = map->fldrv_priv; struct cfi_pri_intelext *extp; unsigned int extra_size = 0; unsigned int extp_size = sizeof(*extp); again: // 调用cfi_util.c模块读取cfi扩展查询表,函数内部分配内存存储该结构,返回指向该结构体的指针 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); if (!extp) return NULL; cfi_fixup_major_minor(cfi, extp); if (extp->MajorVersion != '1' || (extp->MinorVersion < '0' || extp->MinorVersion > '5')) { printk(KERN_ERR " Unknown Intel/Sharp Extended Query " "version %c.%c.\n", extp->MajorVersion, extp->MinorVersion); kfree(extp); return NULL; } // 小端字节序转为CPU字节序 /* Do some byteswapping if necessary */ extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); if (extp->MinorVersion >= '0') { extra_size = 0; // 根据保护寄存器域的个数分配附加内存 /* Protection Register info */ extra_size += (extp->NumProtectionFields - 1) * sizeof(struct cfi_intelext_otpinfo); } // 后面都是intel扩展的特性 if (extp->MinorVersion >= '1') { /* Burst Read info */ extra_size += 2; if (extp_size < sizeof(*extp) + extra_size) goto need_more; extra_size += extp->extra[extra_size - 1]; } if (extp->MinorVersion >= '3') { int nb_parts, i; /* Number of hardware-partitions */ extra_size += 1; if (extp_size < sizeof(*extp) + extra_size) goto need_more; nb_parts = extp->extra[extra_size - 1]; /* skip the sizeof(partregion) field in CFI 1.4 */ if (extp->MinorVersion >= '4') extra_size += 2; for (i = 0; i < nb_parts; i++) { struct cfi_intelext_regioninfo *rinfo; rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; extra_size += sizeof(*rinfo); if (extp_size < sizeof(*extp) + extra_size) goto need_more; rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); extra_size += (rinfo->NumBlockTypes - 1) * sizeof(struct cfi_intelext_blockinfo); } if (extp->MinorVersion >= '4') extra_size += sizeof(struct cfi_intelext_programming_regioninfo); if (extp_size < sizeof(*extp) + extra_size) { need_more: extp_size = sizeof(*extp) + extra_size; kfree(extp); if (extp_size > 4096) { printk(KERN_ERR "%s: cfi_pri_intelext is too fat\n", __func__); return NULL; } goto again; } } return extp;复制代码
cfi_intelext_setup主要做了两件事: 一是初始化mtd_info中擦除区管理结构eraseregions。二是把cfi_cmdset_0001函数设置的reboot_notifier注册到系统。
static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd){ struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; unsigned long offset = 0; int i,j; // 考虑背靠背时,一个大CHIP的大小 unsigned long devsize = (1<cfiq->DevSize) * cfi->interleave; // 设备总容量 mtd->size = devsize * cfi->numchips; mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * mtd->numeraseregions, GFP_KERNEL); if (!mtd->eraseregions) goto setup_err; for (i=0; i cfiq->NumEraseRegions; i++) { unsigned long ernum, ersize; //表示擦除块的大小=256*Z, 还考虑背靠背 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; //表示该擦除区所包含的擦除块的块数 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; // mtd->erasesize保存的是擦除块的最大值 if (mtd->erasesize < ersize) { mtd->erasesize = ersize; } for (j=0; j numchips; j++) { // .offset为该擦除区在该设备中的总偏移 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; //为该擦除区中的擦除块分配bitmap mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].lockmap = kmalloc(ernum / 8 + 1, GFP_KERNEL); } offset += (ersize * ernum); } //offset最后保存的是所有擦除区的大小,总和应该和设备总容量相等 if (offset != devsize) { /* Argh */ printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); goto setup_err; } for (i=0; i numeraseregions;i++){ printk(KERN_DEBUG "erase region %d: offset=0x%llx,size=0x%x,blocks=%d\n", i,(unsigned long long)mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].numblocks); }#ifdef CONFIG_MTD_OTP mtd->_read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; mtd->_read_user_prot_reg = cfi_intelext_read_user_prot_reg; mtd->_write_user_prot_reg = cfi_intelext_write_user_prot_reg; mtd->_lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; mtd->_get_fact_prot_info = cfi_intelext_get_fact_prot_info; mtd->_get_user_prot_info = cfi_intelext_get_user_prot_info;#endif /* This function has the potential to distort the reality a bit and therefore should be called last. */ if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) goto setup_err; //产商命令集模块不能被异步卸载 __module_get(THIS_MODULE); register_reboot_notifier(&mtd->reboot_notifier); return mtd; setup_err: kfree(mtd->eraseregions); kfree(mtd); kfree(cfi->cmdset_priv); return NULL;}复制代码